7.4 Derivatives, Integrals, and Products of Transforms

1. Products of Transforms

Consider the initial value problem

$$
x^{\prime \prime}+x=\cos t ; \quad x(0)=x^{\prime}(0)=0
$$

We apply the Laplace transform on both sides of the equation,

$$
\mathcal{L}\left\{x^{\prime \prime}\right\}+\mathcal{L}\{x\}=\mathcal{L}\{\cos t\}
$$

Recall $\mathcal{L}\left\{x^{\prime \prime}\right\}=s^{2} \mathcal{L}\{x\}-s x(0)-x^{\prime}(0)=s^{2} X(s)$ and $\mathcal{L}\{\cos t\}=\frac{s}{s^{2}+1}$.
We have $\left(s^{2}+1\right) X(s)=\frac{s}{s^{2}+1}$ thus

$$
X(s)=\frac{s}{s^{2}+1} \cdot \frac{1}{s^{2}+1}=\mathcal{L}\{\cos t\} \cdot \mathcal{L}\{\sin t\}
$$

Question 1: Do we have $\mathcal{L}\{\cos t\} \cdot \mathcal{L}\{\sin t\}=\mathcal{L}\{\cos t \sin t\}$? The answer is no, since
$\mathcal{L}\{\cos t \sin t\}=\mathcal{L}\left\{\frac{1}{2} \sin 2 t\right\}=\frac{1}{s^{2}+4} \neq \frac{s}{s^{2}+1} \cdot \frac{1}{s^{2}+1}$.

Question 2:

If $\mathcal{L}\{f(t)\}=F(s)$ and $\mathcal{L}\{g(t)\}=G(s)$, what is $\mathcal{L}^{-1}\{F(s) \cdot G(s)\}$?
Theorem 1 tells us the answer is the following function

$$
\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

We call this function the convolution of f and g and it is denoted as $f * g$.

Definition. The Convolution of Two Functions

The convolution $f * g$ of the piecewise continuous functions f and g is defined for $t \geq 0$ as follows:

$$
\begin{equation*}
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau \tag{1}
\end{equation*}
$$

We will also write $f(t) * g(t)$ when convenient.
Remark: The convolution is commutative: $f * g=g^{*} f$ If we substitute $u=t-\tau$ in (1), $0 \leqslant \tau \leqslant t, \tau=0, u=t$

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau=\int_{t}^{0} f(t-u) g(u) d(-u)=\int_{0}^{t} g(u) f(t-u) d u
$$

$$
=\left(g^{*} f\right)(t)
$$

Example 1 Find the convolution $f(t) * g(t)$ in the given problem

$$
f(t)=\cos t, \quad g(t)=\sin t
$$

Ans: By $E_{q}(1) .(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau$
Thus $(\cos t) *(\sin t)=\int_{0}^{t} \cos \tau \sin (t-\tau) d \tau$
Recall $\cos A \cdot \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)]$

$$
\begin{array}{ll}
\text { Then } \int_{0}^{t} \cos \tau \sin (t-\tau) d \tau & \int \sin (2 \tau-t) d \tau \\
=\frac{1}{2} \int_{0}^{t}[\sin t-\cos t \sin (2 \tau-t)] d \tau \quad & =\frac{1}{2} \int \sin (2 \tau-t) d(2 \tau-t) \\
=\left.\frac{1}{2}\left[\tau \sin t+\frac{1}{2} \cos (2 \tau-t)\right]\right|_{0} ^{t} & =-\frac{1}{2} \cos (2 \tau-t)
\end{array}
$$

Theorem 1 The Convolution Property
Suppose that $f(t)$ and $g(t)$ are piecewise continuous for $t \geqq 0$ and that $|f(t)|$ and $|g(t)|$ are bounded by $M e^{c t}$ as $t \rightarrow+\infty$. Then the Laplace transform of the convolution $f(t) * g(t)$ exists for $s>c$; moreover,

$$
\mathcal{L}\{f(t) * g(t)\}=\mathcal{L}\{f(t)\} \cdot \mathcal{L}\{g(t)\}
$$

and

$$
\mathcal{L}^{-1}\{F(s) \cdot G(s)\}=f(t) * g(t) .
$$

Finding Inverse Transforms
Thus we can find the inverse transform of the product $F(s) \cdot G(s)$, provided that we can evaluate the integral

$$
\mathcal{L}^{-1}\{F(s) \cdot G(s)\}=\int_{0}^{t} f(\tau) g(t-\tau) d \tau .
$$

Example 2 Apply the convolution theorem to find the inverse Laplace transform of the function.

$$
H(s)=\frac{2}{(s-1)\left(s^{2}+4\right)}=\frac{2}{s^{2}+2^{2}} \cdot \frac{1}{s-1}
$$

ANS:

$$
\alpha^{-1}\left\{\frac{2}{(s-1)\left(s^{2}+4\right)}\right\}=\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+2^{2}} \cdot \frac{1}{s-1}\right\}
$$

Recall $\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+2^{2}}\right\}=\sin 2 t, \quad \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}=e^{t}$
Let $f(t)=\sin 2 t$, and $g(t)=e^{t}$.

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{2}{(s-1)\left(s^{2}+4\right)}\right\}=f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau \\
& =\int_{0}^{t} \sin 2 \tau e^{t-\tau} d \tau=e^{t-\tau}=e^{t} \cdot e^{-\tau}=e^{t} \int_{0}^{t} \sin 2 \tau e^{-\tau} d \tau
\end{aligned}
$$

$$
\left\{\begin{array}{l}
a=2 \\
b=-1
\end{array}\right.
$$

Note: $\int e^{b x} \sin a x d x=\frac{1}{a^{2}+b^{2}} e^{b x}(b \sin a x=-a \cos a x)$

$$
\begin{aligned}
& =\left.e^{t} \frac{1}{2^{2}+(-1)^{2}} e^{-\tau}(-\sin 2 \tau-2 \cos 2 \tau)\right|_{0} ^{t} \\
& =e^{t} \cdot \frac{1}{5}\left[e^{-t} \cdot(-\sin 2 t-2 \cos 2 t)-e^{0}(-0-2)\right] \\
& =\frac{1}{5}(-\sin 2 t-2 \cos 2 t)+\frac{2}{5} e^{t} \\
& =\frac{2}{5} e^{t}-\frac{1}{5} \sin 2 t-\frac{2}{5} \cos 2 t
\end{aligned}
$$

$$
\Rightarrow \alpha^{-1}\{H(s)\}=\frac{2}{5} e^{t}-\frac{1}{5} \sin 2 t-\frac{2}{5} \cos 2 t
$$

2. Differentiation of Transforms

Question 3: What is $F^{\prime}(s)$ if $\mathcal{L}\{f(t)\}=F(s)$?
Theorem 2
If $f(t)$ is piecewise continuous for $t \geq 0$ and $|f(t)| \leq M e^{c t}$ as $t \rightarrow+\infty$, then

$$
\mathcal{L}\{-t f(t)\}=F^{\prime}(s)
$$

for $s>c$. Equivalently,

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=-\frac{1}{t} \mathcal{L}^{-1}\left\{F^{\prime}(s)\right\}
$$

Repeated application of Equation (7) gives

$$
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} F^{(n)}(s), \quad n=1,2,3, \ldots
$$

Example 3 Apply Theorem 2 to find the Laplace transform of $f(t)$.
(1) $f(t)=t^{2} \cos k t$ (Exercise)
(2) $f(t)=t e^{-t} \sin 2 t$
(3) $f(t)=t^{2} \sin k t$

ANs: By $E_{q} \otimes, \quad \alpha\left\{t^{2} \sin k t\right]=(-1)^{2} \frac{d^{2}}{d s^{2}}\left(\frac{k}{s^{2}+k^{2}}\right)$

$$
\begin{aligned}
& =\frac{d}{d s}\left(\frac{-2 s \cdot k}{\left(s^{2}+k^{2}\right)^{2}}\right)\left(\frac{f}{q}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}} \\
& =\frac{-2 k\left(s^{2}+k^{2}\right)^{2}-\left[\left(s^{2}+k^{2}\right)^{2}\right]^{\prime} \cdot(-2 k s)}{\left(s^{2}+k^{2}\right)^{4}} \\
& =\frac{-2 k\left(s^{2}+k^{2}\right)^{2}-2 \cdot\left(s^{2}+k^{2}\right) \cdot 2 s \cdot(-2 k s)}{\left(s^{2}+k^{2}\right)^{4}} \\
& =\frac{-2 k\left(s^{2}+k^{2}\right)^{2}+8 k s^{2}\left(s^{2}+k^{2}\right)}{\left(s^{2}+k^{2}\right)^{4} 4^{3}} \\
& =\frac{-2 k\left(s^{2}+k^{2}\right)+8 k s^{2}}{\left(s^{2}+k^{2}\right)^{3}}
\end{aligned}
$$

(1) By Eq $*$

$$
\begin{aligned}
\alpha\left\{t^{2} \cos 2 t\right\} & =(-1)^{2} \frac{d^{2}}{d s^{2}} \frac{s}{s^{2}+2^{2}} \\
& =\frac{d}{d s}\left(\frac{s^{2}+2^{2}-2 s \cdot s}{\left(s^{2}+2^{2}\right)^{2}}\right)=\frac{d}{d s}\left(\frac{-s^{2}+2^{2}}{\left(s^{2}+2^{2}\right)^{2}}\right) \\
& =\frac{-2 s \cdot\left(s^{2}+2^{2}\right)^{2}-\left[\left(s^{2}+2^{2}\right)^{2}\right]^{\prime} \cdot\left(-s^{2}+4\right)}{\left(s^{2}+2^{2}\right)^{4}} \\
& =\frac{-2 s\left(s^{2}+2^{2}\right)^{2}-2\left(s^{2}+4\right) \cdot 2 s \cdot\left(-s^{2}+4\right)}{\left(s^{2}+2^{2}\right)^{4}} \\
& =\frac{-2 s\left(s^{2}+2^{2}\right)^{2}-4 s\left(s^{2}+4\right)\left(-s^{2}+4\right)}{\left(s^{2}+4\right)^{4}} \\
& =\frac{-2 s\left(s^{2}+2^{2}\right)-4 s\left(-s^{2}+4\right)}{\left(s^{2}+4\right)^{3}} \\
& =\frac{-24 s}{\left(s^{2}+4\right)^{3}}+\frac{2 s^{3}}{\left(s^{2}+4\right)^{3}}
\end{aligned}
$$

(2) By $E q \circledast$ and $\mathcal{L}\left\{e^{-t} \sin 2 t\right\}=\frac{2}{(s+1)^{2}+2^{2}}=\frac{2}{s^{2}+2 s+5}$

$$
\begin{aligned}
& \alpha\left\{t e^{-t} \sin 2 t\right\} \\
= & (-1) \frac{d}{d s} \cdot \frac{2}{s^{2}+2 s+5} \\
= & +\frac{2\left(s^{2}+2 s-5\right)^{\prime}}{\left(s^{2}+2 s+5\right)^{2}} \\
= & \frac{4(s+1)}{\left(s^{2}+2 s+5\right)^{2}}
\end{aligned}
$$

3. Integration of Transforms

- In Theorem 2, $F^{\prime}(s)$ corresponds to multiplication of $f(t)$ by t (together with a change of sign).
- It is therefore natural to expect that integration of $F(s)$ will correspond to division of $f(t)$ by t (Theorem $3)$.

Theorem 3. Integration of Transforms
Suppose that $f(t)$ is piecewise continuous for $t \geq 0$, that $f(t)$ satisfies the condition

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{f(t)}{t} \quad \text { exists and is finite } \tag{1}
\end{equation*}
$$

and that $|f(t)| \leqq M e^{c t}$ as $t \rightarrow+\infty$.
Then

$$
\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(\sigma) d \sigma
$$

for $s>c$. Equivalently,

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=t \mathcal{L}^{-1}\left\{\int_{s}^{\infty} F(\sigma) d \sigma\right\}
$$

Example 5 Apply Theorem 3 to find the Laplace transform of $f(t)$.

$$
f(t)=\frac{\sinh t}{t}
$$

L'Hôpital's rule states that for functions f and g which are differentiable on an open interval I except possibly at a point c contained in I, if $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$ or $\pm \infty$, and $g^{\prime}(x) \neq 0$ for all x in I with $x \neq c$, and $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then
ANS: $\alpha\{\sinh t\}=\frac{k}{s^{2}-k^{2}}(s>|k|) \quad s>1$

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

The differentiation of the numerator and

$$
=\lim _{t \rightarrow 0^{+}} \frac{e^{t}+e^{-t}}{2}=1 \text { (exists \& finite) }
$$

Then by Tho 3.

$$
\mathcal{L}\left\{\frac{\sinh t}{t}\right\}=\int_{s}^{\infty} \frac{1}{\sigma^{2}-1} d \sigma=\int_{s}^{\infty} \frac{1}{(\sigma+1)(\sigma-1)} d \sigma
$$

$\frac{\text { Partial traction }}{\text { method }} \frac{1}{2} \int_{s}^{\infty}\left(\frac{1}{\sigma-1}-\frac{1}{\sigma+1}\right) d \sigma$

$$
\begin{aligned}
& =\frac{1}{2}[\ln |\sigma-1|-\ln |\sigma+1|]_{s}^{\infty} \ln x-\ln y=\ln \frac{x}{y} \\
& =\left.\frac{1}{2} \ln \left|\frac{\sigma-1}{\sigma+1}\right|\right|_{s} ^{\infty}< \\
& =\frac{1}{2} \lim _{b \rightarrow \infty}\left[\ln \left|\frac{b-1}{b+1}\right|-\ln \left|\frac{s-1}{s+1}\right|\right] \\
& \left(\begin{array}{l}
\text { Note } \left.\lim _{b \rightarrow \infty} \ln \left|\frac{b-1}{b+1}\right|=\ln \left|\lim _{b \rightarrow \infty}\right| \frac{b-1}{b+1}\left|=\ln \lim _{b \rightarrow \infty}\right| \frac{b+1-2}{b+1} \right\rvert\, \\
\left.=\ln \lim _{b \rightarrow \infty}\left|1-\frac{3}{b+1}\right|=\ln \right\rvert\,=0 \\
=\frac{1}{2}\left(-\ln \left|\frac{s-1}{s+1}\right|\right)=\frac{1}{2}\left(\left.\ln \left|\frac{s-1}{s+1}\right|^{-1}\left|=\frac{1}{2} \ln \right| \frac{s+1}{s-1} \right\rvert\,=\frac{1}{2} \ln \frac{s+1}{s-1}\right.
\end{array}\right.
\end{aligned}
$$

Example 6 Apply the convolution theorem to derive the indicated solution $x(t)$ of the given differential equation with initial conditions $x(0)=x^{\prime}(0)=0$.

$$
x^{\prime \prime}+4 x=f(t) ; \quad x(t)=\frac{1}{2} \int_{0}^{t} f(t-\tau) \sin 2 \tau d \tau
$$

ANs: We apply the Laplace transform on both sides of the given eqn.

$$
\begin{aligned}
& \mathcal{L}\left\{x^{\prime \prime}\right\}+4 \mathcal{L}\{x\}=\alpha\{f(t)\} \\
\Rightarrow & s^{2} X(s)-s \cdot x(0)-x^{\prime}(0)+4 X(s)=F(s) \\
\Rightarrow & \left(s^{2}+4\right) X(s)=F(s) \\
\Rightarrow & X(s)=\frac{F(s)}{s^{2}+4}=\frac{1^{k}(s)}{s^{2}+4} \underline{F(s)}
\end{aligned}
$$

Note $\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+4}\right\}=\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+2^{2}}\right\}=\frac{1}{2} \sin 2 t$

$$
=g(t)
$$

Thus

$$
\begin{aligned}
& x(t)=g(t) * f(t) \Leftarrow \mathcal{L}^{-1}\{F(s) \cdot G(s)\}=f(t) * g(t) . \\
& \text { by et } \\
& \text { din } \\
& \text { (1) } \sin 2 t) * f(t)
\end{aligned}
$$

