7.4 Derivatives, Integrals, and Products of Transforms

1. Products of Transforms

Consider the initial value problem

$$x'' + x = \cos t; \quad x(0) = x'(0) = 0$$

We apply the Laplace transform on both sides of the equation,

$$\mathcal{L}\{x''\} + \mathcal{L}\{x\} = \mathcal{L}\{\cos t\}$$
Recall $\mathcal{L}\{x''\} = s^2 \mathcal{L}\{x\} - sx(0) - x'(0) = s^2 X(s)$ and $\mathcal{L}\{\cos t\} = \frac{s}{s^2 + 1}$
We have $(s^2 + 1)X(s) = \frac{s}{s^2 + 1}$ thus
$$W(s) = \frac{s}{s^2 + 1}$$

$$X(s)=rac{s}{s^2+1}\cdotrac{1}{s^2+1}=\mathcal{L}\{\cos t\}\cdot\mathcal{L}\{\sin t\}$$

Question 1: Do we have $\mathcal{L}{\cos t} \cdot \mathcal{L}{\sin t} = \mathcal{L}{\cos t \sin t}$? The answer is no, since

$$\mathcal{L}\{\cos t \sin t\} = \mathcal{L}\{rac{1}{2} \sin 2t\} = rac{1}{s^2+4}
eq rac{s}{s^2+1} \cdot rac{1}{s^2+1}.$$

Question 2:

If
$$\mathcal{L}{f(t)} = F(s)$$
 and $\mathcal{L}{g(t)} = G(s)$, what is $\mathcal{L}^{-1}{F(s) \cdot G(s)}$?

Theorem 1 tells us the answer is the following function

$$\int_0^t f(au) g(t- au) \, d au.$$

We call this function the convolution of f and g and it is denoted as f * g.

Definition. The Convolution of Two Functions

The **convolution** f * g of the piecewise continuous functions f and g is defined for $t \ge 0$ as follows:

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,d\tau \qquad (1)$$

We will also write f(t) * g(t) when convenient.

Remark: The convolution is commutative:
$$f \neq g = g \neq f$$

If we substitute $u = t - \tau$ in (1), $0 \leq \tau \leq t$, $\tau = 0$, $u = t$
 $\Rightarrow \tau = t - u$
 $(f \neq g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau = \int_t^0 f(t - u)g(u)d(-u) = \int_0^t g(u)f(t - u)du$

=(g*f)lt

Example 1 Find the convolution f(t) * g(t) in the given problem

$$f(t) = \cos t, g(t) = \sin t$$
ANS: By Eq(1). $(f \times g)(t) = \int_{0}^{t} f(\tau)g(t-\tau)d\tau$
Thus $(\cos t) \times (\sin t) = \int_{0}^{t} \cos \tau \sin(t-\tau) d\tau$
Recall $\cos A \cdot \sin B = \frac{1}{2} [\sin t (A+B) - \sin (A-B)]$
Then $\int_{0}^{t} \cos \tau \sinh(t-\tau)d\tau$ for τ $= \frac{1}{2} \int \sinh(2\tau-t)d\tau$ $(2\tau-t) \int d\tau$ $= \frac{1}{2} \int \sinh(2\tau-t)d(2\tau-t)$
 $= \frac{1}{2} \int \int_{0}^{t} \left[\sinh t - \sin(2\tau-t) \right] d\tau$ $= -\frac{1}{2} \cosh(2\tau-t)d(2\tau-t)$
 $= \frac{1}{2} \left[\tau \sinh t + \frac{1}{2} \cos(2\tau-t) \right] \left[t - \frac{1}{2} \cos(2\tau-t) \right]$
 $= \frac{1}{2} \left[t \sinh t + \frac{1}{2} \cos t - 0 - \frac{1}{2} \cos(-t) \right]$
 $= \frac{1}{2} \left[t \sinh t + \frac{1}{2} \cos t - 0 - \frac{1}{2} \cos(-t) \right]$

Theorem 1 The Convolution Property

Suppose that f(t) and g(t) are piecewise continuous for $t \ge 0$ and that |f(t)| and |g(t)| are bounded by Me^{ct} as $t \to +\infty$. Then the Laplace transform of the convolution f(t) * g(t) exists for s > c; moreover,

$$\mathcal{L}{f(t) * g(t)} = \mathcal{L}{f(t)} \cdot \mathcal{L}{g(t)}$$

and

$$\mathcal{L}^{-1}\{F(s)\cdot G(s)\}=f(t)*g(t)$$

Finding Inverse Transforms

Thus we can find the inverse transform of the product $F(s) \cdot G(s)$, provided that we can evaluate the integral

$$\mathcal{L}^{-1}\{F(s)\cdot G(s)\} = \int_0^t f(\tau)g(t-\tau)\,d\tau.$$

Example 2 Apply the convolution theorem to find the inverse Laplace transform of the function.

$$H(s) = \frac{2}{(s-1)(s^{2}+4)} = \frac{2}{s^{2}+1} \cdot \frac{1}{s-1}$$

AWS:

$$\int_{-1}^{-1} \left\{ \frac{2}{(s-1)(s^{2}+4)} \right\} = \int_{-1}^{-1} \left\{ \frac{2}{s^{2}+1} \cdot \frac{1}{s-1} \right\}$$

Recall $\int_{-1}^{-1} \left\{ \frac{2}{s^{2}+1} \cdot \frac{1}{s} \right\}$ = gin 2t, $\int_{-1}^{-1} \left\{ \frac{1}{s-1} \right\} = e^{t}$
Let $\int_{-1}^{-1} \left\{ \frac{2}{s^{2}+1} \cdot \frac{1}{s-1} \right\}$ = $\int_{-1}^{-1} \left\{ \frac{1}{s-1} \right\}$ = e^{t}
Let $\int_{-1}^{-1} \left\{ \frac{2}{s^{2}+1} \cdot \frac{1}{s-1} \right\}$ = $\int_{-1}^{-1} \left\{ \frac{1}{s-1} \cdot \frac{1}{s-1} \right\}$ = e^{t}
Let $\int_{-1}^{-1} \left\{ \frac{2}{s^{2}+1} \cdot \frac{1}{s-1} \right\}$ = $\int_{-1}^{-1} \left\{ \frac{1}{s-1} \cdot \frac{1}{s-1} \cdot \frac{1}{s-1} \cdot \frac{1}{s-1} \right\}$ = e^{t}
Let $\int_{-1}^{-1} \left\{ \frac{2}{s^{2}+1} \cdot \frac{1}{s-1} \right\}$ = $\int_{-1}^{-1} \left\{ \frac{1}{s-1} \cdot \frac{1}{s-1} \cdot \frac{1}{s-1} \cdot \frac{1}{s-1} \cdot \frac{1}{s-1} \cdot \frac{1}{s-1} \cdot \frac{1}{s-1} \right\}$
= $\int_{0}^{1} \sin 2\tau \cdot \frac{1}{s^{2}+1} \cdot \frac{1}{s-1} \cdot$

 $\Rightarrow \mathcal{L}'\mathcal{H}(s) = \exists e^{t} - \exists sin 2t - \exists cos 2t$

2. Differentiation of Transforms

Question 3: What is F'(s) if $\mathcal{L}{f(t)} = F(s)$?

Theorem 2

If f(t) is piecewise continuous for $t\geq 0$ and $|f(t)|\leq Me^{ct}$ as $t
ightarrow +\infty$, then

 $\mathcal{L}\{-tf(t)\} = F'(s)$

for s > c. Equivalently,

$$f(t) = \mathcal{L}^{-1}{F(s)} = -\frac{1}{t}\mathcal{L}^{-1}{F'(s)}.$$

Repeated application of Equation (7) gives

$$\mathcal{L}\{t^n f(t)\} = (-1)^n F^{(n)}(s), \quad n = 1, 2, 3, \dots$$

Example 3 Apply Theorem 2 to find the Laplace transform of f(t).

(1) $f(t) = t^2 \cos kt$ (Exercise) (2) $f(t) = te^{-t} \sin 2t$ (Exercise) (3) $f(t) = t^2 \sin kt$ ANS: By Eq. L t winkt $] = (-1)^2 \frac{d^2}{ds^2} \left(\frac{k}{s^2 + k^2} \right)$ $=\frac{d}{ds}\left(\frac{-2s\cdot k}{\left(s^{2}+k^{2}\right)^{2}}\right) \qquad \left(\frac{f}{g}\right)'=\frac{f'g-g'f}{g^{2}}$ $= \frac{-2k(s^2+k^2)^2 - [(s+k^2)^2]' \cdot (-2ks)}{(s^2+k^2)^4}$ $= \frac{-2k(s^{2}+k^{2})^{2}-2\cdot(s^{2}+k^{2})\cdot 2s\cdot(-2ks)}{(s^{2}+k^{2})^{4}}$ $= \frac{-2k(s^{2}+k^{2})^{2}+8ks^{2}(s^{2}+k^{2})}{(s^{2}+k^{2})^{4}}$ $= \frac{-2k(s^{2}+k^{2})+8ks^{2}}{(s^{2}+k^{2})^{3}} = \frac{6ks^{2}-2k^{3}}{(s^{2}+k^{2})^{3}}$

(1) By Eq. (1)

$$\begin{aligned}
d = \int_{1}^{2} \int$$

3. Integration of Transforms

- In Theorem 2, F'(s) corresponds to multiplication of f(t) by t (together with a change of sign).
- It is therefore natural to expect that integration of F(s) will correspond to division of f(t) by t (Theorem 3).

Theorem 3. Integration of Transforms

Suppose that f(t) is piecewise continuous for $t \ge 0$, that f(t) satisfies the condition

$$\lim_{t o 0^+} rac{f(t)}{t} \quad ext{exists and is finite}, \qquad \qquad igcap {1 \ t}$$

and that $|f(t)| \leq Me^{ct}$ as $t \to +\infty$. Then

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\sigma) \, d\sigma$$

for s > c. Equivalently,

$$f(t) = \mathcal{L}^{-1}\{F(s)\} = t\mathcal{L}^{-1}\left\{\int_{s}^{\infty} F(\sigma) \, d\sigma\right\}.$$

Example 5 Apply Theorem 3 to find the Laplace transform of f(t).

$$f(t) = \frac{\sinh t}{t}$$

$$f(t) = \frac{\hbar}{t}$$

$$f(t)$$

L'Hôpital's rule states that for functions f and gwhich are differentiable on an open interval Iexcept possibly at a point c contained in I, if $\lim_{x
ightarrow c} f(x) = \lim_{x
ightarrow c} g(x) = 0 ext{ or } \pm \infty,$ nd

nt or ed

$$= \frac{1}{2} \left[\ln |\sigma - 1| - \ln |\sigma + 1| \right]_{S}^{\infty} \ln x - \ln y = \ln \frac{x}{y}$$

$$= \frac{1}{2} \ln \left| \frac{\sigma - 1}{\sigma + 1} \right|_{S}^{\infty}$$

$$= \frac{1}{2} \lim_{b \to \infty} \left[\ln \left| \frac{b - 1}{b + 1} \right| - \ln \left| \frac{s - 1}{|s + 1|} \right| \right]$$

$$Note \lim_{b \to \infty} \ln \left| \frac{b - 1}{b + 1} \right| = \ln \lim_{b \to \infty} \left| \frac{b - 1}{b + 1} \right| = \ln \lim_{b \to \infty} \left| \frac{b + 1 - 2}{b + 1} \right|$$

$$= \ln \lim_{b \to \infty} \left| 1 - \frac{2}{b + 1} \right| = \ln 1 = 0$$

$$\Rightarrow = \frac{1}{2} \left(-\ln \frac{|s - 1|}{|s + 1|} \right) = \frac{1}{2} \left(\ln \frac{|s - 1|}{|s + 1|} \right) = \frac{1}{2} \ln \frac{|s + 1|}{|s - 1|} = \frac{1}{2} \ln \frac{|s + 1|}{|s - 1|}$$

Example 6 Apply the convolution theorem to derive the indicated solution x(t) of the given differential equation with initial conditions x(0) = x'(0) = 0.

$$x'' + 4x = f(t); \quad x(t) = \frac{1}{2} \int_{0}^{t} f(t - \tau) \sin 2\tau d\tau$$

ANS: We apply the Laplace transform on both sides
of the given eqn.

$$\begin{aligned}
& \quad \\ & \quad \\$$

Note
$$\int_{-1}^{-1} \left\{ \frac{1}{s+4} \right\}^2 = \frac{1}{2} \int_{-1}^{-1} \left\{ \frac{2}{s+1^2} \right\}^2 = \frac{1}{2} \sin 2t$$

 $\int_{-1}^{\frac{1}{s+4}} \left\{ \frac{1}{s+4} \right\}^2 = \frac{1}{2} \sin 2t$
 $= g(t)$
Thus $X(s) = G(s) \cdot F(s) \qquad \text{Apply}$
 $X(t) = g(t) \times f(t) \leftarrow \mathcal{L}^{-1}\{F(s) \cdot G(s)\} = f(t) * g(t).$

$$= (\frac{1}{2} \operatorname{sin} 2t) \star f(t)$$

by def

$$= \frac{1}{2} \int_{0}^{t} \operatorname{sin} 2t f(t-\tau) d\tau$$